Analysis of the alfalfa root transcriptome in response to salinity stress.

نویسندگان

  • Olga A Postnikova
  • Jonathan Shao
  • Lev G Nemchinov
چکیده

Salinity is one of the major abiotic factors affecting alfalfa productivity. Identifying genes that control this complex trait will provide critical insights for alfalfa breeding programs. To date, no studies have been published on a deep sequencing-based profiling of the alfalfa transcriptome in response to salinity stress. Observations gathered through research on reference genomes may not always be applicable to alfalfa. In this work, Illumina RNA-sequencing was performed in two alfalfa genotypes contrasting in salt tolerance, in order to estimate a broad spectrum of genes affected by salt stress. A total of 367,619,586 short reads were generated from cDNA libraries originated from roots of both lines. More than 60,000 tentative consensus sequences (TCs) were obtained and, among them, 74.5% had a significant similarity to proteins in the NCBI database. Mining of simple sequence repeats (SSRs) from all TCs revealed 6,496 SSRs belonging to 3,183 annotated unigenes. Bioinformatics analysis showed that the expression of 1,165 genes, including 86 transcription factors (TFs), was significantly altered under salt stress. About 40% of differentially expressed genes were assigned to known gene ontology (GO) categories using Arabidopsis GO. A random check of differentially expressed genes by quantitative real-time PCR confirmed the bioinformatic analysis of the RNA-seq data. A number of salt-responsive genes in both tested genotypes were identified and assigned to functional classes, and gene candidates with roles in the adaptation to salinity were proposed. Alfalfa-specific data on salt-responsive genes obtained in this work will be useful in understanding the molecular mechanisms of salinity tolerance in alfalfa.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Network-based transcriptome analysis in salt tolerant and salt sensitive maize (Zea mays L.) genotypes

Identification of genes involved in salinity stress tolerance provides deeper insight into molecular mechanisms underlying salinity tolerance in maize. The present study was conducted in the faculty of agriculture of Urmia university, Iran, in 2018, with the aim of identifying genetic differences between two maize genotypes in tolerance to salinity stress, and the results of gene expression wer...

متن کامل

Relationship Between Ion Accumulation and Plant Biomass of Alfalfa Under Salt Stress

Abstract Salinity is one of the major abiotic challenges influencing plant productivity worldwide. To examine the response of two alfalfa cultivars (Bami and Hamedani) to six levels of water salinity (0, 25, 50, 75, 100, 125 mM L-1 NaCl), a glasshouse experiment was conducted at the College of Agriculture, Shiraz University, Shiraz, Iran in 2008. The results showed that in Bami (which appeared...

متن کامل

Effect of irrigation with saline water on ion homeostasis and forage dry yield in Alfalfa ecotypes application of high salty water for Alfalfa plants irrigation

Salinity stress is a brutal environmental stress which decreases the yield production of plants. Questions rise on which of the ionic stress or lack of water has deleterious effects on plants forage dry yield. Also, questions remain on whether the K+ reduction or Na+ accumulation is more important in forage dry yield reduction under salinity stress. The present experiment was conducted to answe...

متن کامل

The investigation of some biochemical and physiological responses of alfalfa (Medicago sativa L.) cultivars from Iran to NaCl salinity stress. Seyed Afshin Hosseini-Boldaji1, Babak Babakhani2, Reza Hassan-Sajedi3

In order to investigate the effects of salt stress on biochemical and physiological responses of two cultivars of alfalfa (Medicago sativa L.) namely, Diabolourde and Yazdi, chlorophyll content, growth parameters, and proline contents of roots and shoots, reducing sugars contents of roots and shoots, and membrane injuries of the plant samples were subjected to 0, 100, 150, and 200 mM NaCl treat...

متن کامل

Evaluation of Biochemical Response and Defense Mechanism of Wheat Antioxidant Enzymes to Salinity Stress

  Understanding the reaction form and biochemical response of wheat cultivars about the salinity stress can help to better understand the defense mechanisms and identify the indicators and biomarkers of tolerance screening for salinity stress in this strategic plant and other field crop. For this purpose, biochemical traits related to salinity tolerance of wheat cultivars were evaluated as a f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant & cell physiology

دوره 54 7  شماره 

صفحات  -

تاریخ انتشار 2013